
© Copyright Ian D. Romanick 2009, 2010

1-June-2010

VGP351 – Week 9

⇨ Agenda:
 Quiz #4
 Framebuffer blending

 Transparency
 Multipass rendering

 Stencil buffer
 Fog

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Graphics Pipeline

API

Primitive
Processing

Vertex Memory

Vertex
Shader

Primitive
Assembly

Rasterization
Fragment
Shader

Per-fragment
Operations

Framebuffer

Texture
Memory

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Blending

⇨ Last of the “per-sample” operations
 Color output from fragment shader is combined with

color already in the framebuffer

⇨ Many uses!
 Translucent / transparent objects

 Difficult problem in the general case...objects must be
rendered in the correct order and cannot intersect

 Anti-aliasing
 Especially useful for fonts and 2D “stroked” objects

 2D compositing
 Quartz (Mac OS X), Aero (Vista), compiz (X Windows)

 Multi-pass rendering

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Blending

Color from the fragment
shader

Color already in the
framebuffer

F
dst

C
dst

F
src

C
src

× ×

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Blending Function

Source blending function Destination blending
function

F
dst

C
dst

F
src

C
src

× ×

 GL_SRC_ALPHA
 GL_SRC_COLOR
 GL_DST_ALPHA
 GL_DST_COLOR
 GL_CONSTANT_COLOR
 GL_CONSTANT_ALPHA

 The above have a “one minus” form:
GL_ONE_MINUS_SRC_ALPHA

 GL_ZERO, GL_ONE
 GL_SRC_ALPHA_SATURATE

 Only available as a source factor

 F
src

 = min(A
s
, 1 - A

d
)

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Blending Function

⇨ Blend function set with:
void glBlendFuncSeparate(
 GLenum srcRGB, GLenum dstRGB,
 GLenum srcAlpha, GLenum dstAlpha);

⇨ Blend constant color set with:
void glBlendColor(GLclampf red,
 GLclampf green,
 GLclampf blue,
 GLclampf alpha);

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Blending Equation

F
dst

C
dst

F
src

C
src

× ×

Blending equation
 GL_FUNC_ADD
 GL_FUNC_SUBTRACT
 GL_FUNC_REVERSE_SUBTRACT
 GL_MIN
 GL_MAX

 Min and max equations do not
modulate with the blend functions

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Blending Equation

⇨ Blending equation set with
void glBlendEquationSeparate(GLenum modeRGB,
 GLenum modeAlpha);

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Alpha Buffer

⇨ If the desired blend modes use destination
alpha, the color buffer must have alpha bits

 As usual, ask SDL to allocate an appropriate buffer
SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE, 8);

 If there is no explicit destination alpha value, the
destination alpha value is implicitly 1.0

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Transparency

⇨ Want to see through certain objects

Image from Enemy Territory: Quake Wars, Copyright 2007 id Software, Inc.

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Transparency

⇨ Transparent / translucent objects affect the
appearance of objects behind them

 Multiple levels of transparent objects accumulate
additional effects

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Transparency

⇨ Rendering must be performed in a specific order
 Render all non-transparent objects first
 Render transparent objects in back-to-front order

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Alpha Test

⇨ Sometimes transparency is used to simulate
holes in objects

Image from Enemy Territory: Quake Wars, Copyright 2007 id Software, Inc.

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Alpha Test

⇨ Much faster to draw a single polygon with a
texture than to draw many lines or small
polygons

 Observe that each fragment is either completely
opaque (= 1.0) or completely transparent (= 0.0)

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Alpha Test

⇨ Optimize by killing fragments with below a
certain threshold

 Used to be performed in an extra per-sample
operation called alpha test
if (calculated_color.a <= threshold)
 discard;

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ What do you do when the desired shading effect
requires more resources than the hardware has
available?

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ What do you do when the desired shading effect
requires more resources than the hardware has
available?

 Use a different effect...probably with lower quality
 Render in multiple passes

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ Divide the shader into multiple parts
 Partition at places where blending can combine partial

results
 Example: Perform diffuse textured pass. Configure

blender to add fragment color to framebuffer. Finally,
perform specular-only pass.

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ Why do we want to render in as few passes as
possible?

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ Why do we want to render in as few passes as
possible?

 Multiple passes are almost always slower
 Memory for each pixel must be accessed multiple times
 Geometry must be processed multiple times
 Usually have to change state (e.g., textures, blend modes)

between passes

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ Why do we want to render in as few passes as
possible?

 Less accurate
 Framebuffer usually only has 8 bits per component

 Can work around this at the cost of an extra post-process pass

 Shader math is at least 24-bit floating point per component

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ Why do we want to render in as few passes as
possible?

 Can't always achieve the desired result
 Doesn't work well with translucent objects
 Can't always partition into parts that can be combined with

the blender

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

References

http://en.wikipedia.org/wiki/Alpha_compositing
 Good background on general alpha blending theory

http://developer.nvidia.com/object/order_independent_transparency.html
 Solves the ordering problem, but is complex to implement
 We'll come back to it next term :)

Peltzer, K. “Rendering Countless Blades of Waving Grass.” In GPU
Gems. Ed. Randima Fernando. Upper Saddle River, NJ:
Addison-Wesley Professional, April 1, 2004.
http://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch07.html

http://en.wikipedia.org/wiki/Alpha_compositing
http://developer.nvidia.com/object/order_independent_transparency.html
http://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch07.html

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Buffer

⇨ Extra per-pixel buffer containing integer values
 Values in stencil buffer can be used to control drawing
 Often interleaved with depth buffer

 24-bit depth and 8-bit stencil is most common

⇨ To use stencil buffer, ask SDL to create one:
SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 1);

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Test

⇨ Drawing can be controlled via stencil test
 If the test passes, drawing proceeds
 If the test fails, the fragment is not drawn
 Enable stencil test with:

glEnable(GL_STENCIL_TEST);

 Configure stencil test with:
glStencilFuncSeparate(GLenum face, GLenum func,
 GLint ref, GLuint mask);

 The names are different, but this is conceptually
identical to the depth test

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Test

glStencilFuncSeparate(GLenum face, GLenum func,
 GLint ref, GLuint mask);

 face specifies whether front, back, or both front and
back face state is set

 func specifies the test function: GL_NEVER,
GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL,
GL_EQUAL, GL_NOTEQUAL, and GL_ALWAYS

 ref specifies the reference value for the stencil test

 mask specifies a mask that is ANDed with both the
reference value and the stored stencil value when the
test is done

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Test

⇨ Occurs per-fragment, just like the depth test
 Stencil test occurs before the depth test
 Per-fragment operation is:

(ref & mask) op (stencil & mask)
 Remember: ref, op, and mask all depend on the

polygon's facing!

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Operation

⇨ Stencil buffer values are modified per-fragment
depending on the state of the fragment:

 Fragment failed the stencil test
 Fragment passed the stencil test but failed the depth

test
 Fragment passed the stencil test and passed the

depth test

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Operation

⇨ Eight possible operations:
 GL_KEEP – Keep existing value

 GL_ZERO – Set value to zero

 GL_REPLACE – Replace value with a reference value

 GL_INCR – Increment value, clamp to max
 GL_INCR_WRAP – Increment value, wrap to zero

 GL_DECR – Decrement value, clamp to zero
 GL_DECR_WRAP – Decrement value, wrap to max

 GL_INVERT – Bitwise inversion of value

⇨ Result is always masked with the stencil mask

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Operation

⇨ All three operations set using:
void glStencilOpSeparate(GLenum face,
 GLenum sfail, GLenum dpfail,
 GLenum dppass);

 face specifies whether front, back, or both front and
back face state is set

 sfail specifies the operation for fragments that fail
the stencil test

 dpfail specifies the operation for fragments that fail
the depth test

 dppass specifies the operation for fragments that
pass the stencil and depth tests

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Buffer

⇨ Clear the stencil buffer with the
GL_STENCIL_BUFFER_BIT to glClear:
glClear(GL_STENCIL_BUFFER_BIT);

 If you're going to also clear the depth buffer, always
do it at the same time as the stencil buffer!

 Hardware is optimized for clearing depth and stencil together
 Clearing them separately is often much, much slower

⇨ Clear value is specified with glClearStencil

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Buffer

⇨ Writing to bits of the stencil buffer is controlled
by another write mask
void glStencilMask(GLuint mask);

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Buffer

glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT
 | GL_COLOR_BUFFER_BIT);
glEnable(GL_STENCIL_TEST);

/* Write 1 to stencil where polygon is drawn.
 */
glStencilFuncSeparate(GL_FRONT_AND_BACK,
 GL_ALWAYS, 1, ~0);
glStencilOpSeparate(GL_FRONT_AND_BACK,
 GL_KEEP, GL_KEEP, GL_REPLACE);
draw_some_polygon();

/* Draw scene only where stencil buffer is 1.
 */
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
glStencilFuncSeparate(GL_FRONT_AND_BACK,
 GL_EQUAL, 1, ~0);
glStencilOpSeparate(GL_FRONT_AND_BACK,
 GL_KEEP, GL_KEEP, GL_KEEP);
draw_scene();

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Buffer

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Buffer

Image from Quake 3, Copyright 1999 id Software, Inc.

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Typical fog... objects father away from the
camera are more fog colored

 Eventually objects disappear into the fog
 Objects closer than some minimum distance may

have no fog coloring applied

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Can be used for other, related effects:
 In dark environments, distant objects are darker

 Analogous to distance attenuation for lights

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Can be used for other, related effects:
 Underwater objects fade to the water color

Image from http://www.richard-seaman.com/Underwater/Philippines/Highlights/index.html

http://www.richard-seaman.com/Underwater/Philippines/Highlights/index.html

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Simple fog usually works in one of three modes:
 Linear fog:

f end−p

f end−f start

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Simple fog usually works in one of three modes:
 Linear fog:

f end−p

f end−f start

Distance before
which there is no fog

Distance beyond
which there is only fog

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Simple fog usually works in one of three modes:
 Linear fog:

 Exponential fog:

f end−p

f end−f start

e−d×p

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Simple fog usually works in one of three modes:
 Linear fog:

 Exponential fog:

f end−p

f end−f start

e−d×p

Fog density

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Simple fog usually works in one of three modes:
 Linear fog:

 Exponential fog:

 Exponential-squared fog:

f end−p

f end−f start

e−d×p

e−d×p2

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Once the fog factor is calculated, use it to
linearly blend between the fragment color and
the fog color

C=F⋅C fragment1−F ⋅C fog

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Where does p come from?

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Where does p come from?
 Easy answer: eye-space Z

 “Off center” points receive less
fog than they should

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Where does p come from?
 Easy answer: eye-space Z

 “Off center” points receive less
fog than they should

 Better answer: use eye-space distance
 More expensive to calculate
 Still has artifacts when calculated per-vertex

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Height-based Fog

⇨ Fog factor given by:

Where:
 is the fog density function

A and B are points in space

 This integral gives the “optical depth”
 Simplifying assumption: depends only on altitude

e
−∫A

B
t dt

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Height-based Fog

⇨ Two components to the optical distance between
the eye and the fogged point:

 Change in altitude:
 Distance in the plane:

⇨ Two important cases:

f={
d×py y=0

1d
 y

2

×∫ey

py

y dy y≠0

d=px−ex
2pz−ez

2

 y=py−ey

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Height-based Fog

⇨ Two components to the optical distance between
the eye and the fogged point:

 Change in altitude:
 Distance in the plane:

⇨ Two important cases:

f={
d×py y=0

1d
 y

2

×∫ey

py

y dy y≠0

d=px−ex
2pz−ez

2

 y=py−ey

This is the “standard”
fog case!

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Height-based Fog

⇨ At each index n of a look-up table, store the
value:

⇨ To calculate the integral over e
y
 to p

y
, simply

calculate table[p.y] – table[e.y]
 This kind of table is called a summed-area table, and

they are incredibly useful!

∫−∞

n
 y dy

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

References

http://developer.nvidia.com/object/shadows_transparency_fog.html
 Older, but has some useful information and image

http://mrl.nyu.edu/~perlin/experiments/ball/
http://mrl.nyu.edu/~perlin/experiments/gabor/

 Very cool example of what can be done with explicitly calculated fog
coordinates. Second link has the theory behind the Java applet.

Legakis, J. Fast multi-layer fog. In ACM SIGGRAPH 98 Conference
Abstracts and Applications (Orlando, Florida, United States, July 19 -
24, 1998). SIGGRAPH '98. ACM, New York, NY.

Nuebel, M. "Introduction to Different Fog Effects," In ShaderX2:
Introductions and Tutorials with DirectX 9. Ed. Wolfgang Engel.
Wordware, pp. 151-179, 2003.
http://www.gamedev.net/reference/programming/features/shaderx2/Introductions_and_Tutorials_with_DirectX_9.pdf

http://developer.nvidia.com/object/shadows_transparency_fog.html
http://mrl.nyu.edu/~perlin/experiments/ball/
http://mrl.nyu.edu/~perlin/experiments/gabor/
http://www.gamedev.net/reference/programming/features/shaderx2/Introductions_and_Tutorials_with_DirectX_9.pdf

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Next week...

⇨ More anti-aliasing
 AA during primitive rasterization
 FSAA

 Supersampling
 Multisampling

 Temporal AA

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

