
© Copyright Ian D. Romanick 2009, 2010

1-June-2010

VGP351 – Week 9

⇨ Agenda:
­ Quiz #4
­ Framebuffer blending

­ Transparency
­ Multipass rendering

­ Stencil buffer
­ Fog

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Graphics Pipeline

API

Primitive
Processing

Vertex Memory

Vertex
Shader

Primitive
Assembly

Rasterization
Fragment
Shader

Per-fragment
Operations

Framebuffer

Texture
Memory

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Blending

⇨ Last of the “per-sample” operations
­ Color output from fragment shader is combined with

color already in the framebuffer

⇨ Many uses!
­ Translucent / transparent objects

­ Difficult problem in the general case...objects must be
rendered in the correct order and cannot intersect

­ Anti-aliasing
­ Especially useful for fonts and 2D “stroked” objects

­ 2D compositing
­ Quartz (Mac OS X), Aero (Vista), compiz (X Windows)

­ Multi-pass rendering

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Blending

Color from the fragment
shader

Color already in the
framebuffer

F
dst

C
dst

F
src

C
src

× ×

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Blending Function

Source blending function Destination blending
function

F
dst

C
dst

F
src

C
src

× ×

­ GL_SRC_ALPHA
­ GL_SRC_COLOR
­ GL_DST_ALPHA
­ GL_DST_COLOR
­ GL_CONSTANT_COLOR
­ GL_CONSTANT_ALPHA

­ The above have a “one minus” form:
GL_ONE_MINUS_SRC_ALPHA

­ GL_ZERO, GL_ONE
­ GL_SRC_ALPHA_SATURATE

­ Only available as a source factor

­ F
src

 = min(A
s
, 1 - A

d
)

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Blending Function

⇨ Blend function set with:
void glBlendFuncSeparate(
 GLenum srcRGB, GLenum dstRGB,
 GLenum srcAlpha, GLenum dstAlpha);

⇨ Blend constant color set with:
void glBlendColor(GLclampf red,
 GLclampf green,
 GLclampf blue,
 GLclampf alpha);

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Blending Equation

F
dst

C
dst

F
src

C
src

× ×

Blending equation
­ GL_FUNC_ADD
­ GL_FUNC_SUBTRACT
­ GL_FUNC_REVERSE_SUBTRACT
­ GL_MIN
­ GL_MAX

­ Min and max equations do not
modulate with the blend functions

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Blending Equation

⇨ Blending equation set with
void glBlendEquationSeparate(GLenum modeRGB,
 GLenum modeAlpha);

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Alpha Buffer

⇨ If the desired blend modes use destination
alpha, the color buffer must have alpha bits

­ As usual, ask SDL to allocate an appropriate buffer
SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE, 8);

­ If there is no explicit destination alpha value, the
destination alpha value is implicitly 1.0

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Transparency

⇨ Want to see through certain objects

Image from Enemy Territory: Quake Wars,  Copyright 2007 id Software, Inc.

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Transparency

⇨ Transparent / translucent objects affect the
appearance of objects behind them

­ Multiple levels of transparent objects accumulate
additional effects

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Transparency

⇨ Rendering must be performed in a specific order
­ Render all non-transparent objects first
­ Render transparent objects in back-to-front order

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Alpha Test

⇨ Sometimes transparency is used to simulate
holes in objects

Image from Enemy Territory: Quake Wars,  Copyright 2007 id Software, Inc.

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Alpha Test

⇨ Much faster to draw a single polygon with a
texture than to draw many lines or small
polygons

­ Observe that each fragment is either completely
opaque ( = 1.0) or completely transparent ( = 0.0)

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Alpha Test

⇨ Optimize by killing fragments with  below a
certain threshold

­ Used to be performed in an extra per-sample
operation called alpha test
if (calculated_color.a <= threshold)
 discard;

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ What do you do when the desired shading effect
requires more resources than the hardware has
available?

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ What do you do when the desired shading effect
requires more resources than the hardware has
available?

­ Use a different effect...probably with lower quality
­ Render in multiple passes

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ Divide the shader into multiple parts
­ Partition at places where blending can combine partial

results
­ Example: Perform diffuse textured pass. Configure

blender to add fragment color to framebuffer. Finally,
perform specular-only pass.

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ Why do we want to render in as few passes as
possible?

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ Why do we want to render in as few passes as
possible?

­ Multiple passes are almost always slower
­ Memory for each pixel must be accessed multiple times
­ Geometry must be processed multiple times
­ Usually have to change state (e.g., textures, blend modes)

between passes

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ Why do we want to render in as few passes as
possible?

­ Less accurate
­ Framebuffer usually only has 8 bits per component

­ Can work around this at the cost of an extra post-process pass

­ Shader math is at least 24-bit floating point per component

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Multi-pass Rendering

⇨ Why do we want to render in as few passes as
possible?

­ Can't always achieve the desired result
­ Doesn't work well with translucent objects
­ Can't always partition into parts that can be combined with

the blender

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

References

http://en.wikipedia.org/wiki/Alpha_compositing
­ Good background on general alpha blending theory

http://developer.nvidia.com/object/order_independent_transparency.html
­ Solves the ordering problem, but is complex to implement
­ We'll come back to it next term :)

Peltzer, K. “Rendering Countless Blades of Waving Grass.” In GPU
Gems. Ed. Randima Fernando. Upper Saddle River, NJ:
Addison-Wesley Professional, April 1, 2004.
http://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch07.html

http://en.wikipedia.org/wiki/Alpha_compositing
http://developer.nvidia.com/object/order_independent_transparency.html
http://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch07.html

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Buffer

⇨ Extra per-pixel buffer containing integer values
­ Values in stencil buffer can be used to control drawing
­ Often interleaved with depth buffer

­ 24-bit depth and 8-bit stencil is most common

⇨ To use stencil buffer, ask SDL to create one:
SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 1);

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Test

⇨ Drawing can be controlled via stencil test
­ If the test passes, drawing proceeds
­ If the test fails, the fragment is not drawn
­ Enable stencil test with:

glEnable(GL_STENCIL_TEST);

­ Configure stencil test with:
glStencilFuncSeparate(GLenum face, GLenum func,
 GLint ref, GLuint mask);

­ The names are different, but this is conceptually
identical to the depth test

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Test

glStencilFuncSeparate(GLenum face, GLenum func,
 GLint ref, GLuint mask);

­ face specifies whether front, back, or both front and
back face state is set

­ func specifies the test function: GL_NEVER,
GL_LESS, GL_LEQUAL, GL_GREATER, GL_GEQUAL,
GL_EQUAL, GL_NOTEQUAL, and GL_ALWAYS

­ ref specifies the reference value for the stencil test

­ mask specifies a mask that is ANDed with both the
reference value and the stored stencil value when the
test is done

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Test

⇨ Occurs per-fragment, just like the depth test
­ Stencil test occurs before the depth test
­ Per-fragment operation is:

(ref & mask) op (stencil & mask)
­ Remember: ref, op, and mask all depend on the

polygon's facing!

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Operation

⇨ Stencil buffer values are modified per-fragment
depending on the state of the fragment:

­ Fragment failed the stencil test
­ Fragment passed the stencil test but failed the depth

test
­ Fragment passed the stencil test and passed the

depth test

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Operation

⇨ Eight possible operations:
­ GL_KEEP – Keep existing value

­ GL_ZERO – Set value to zero

­ GL_REPLACE – Replace value with a reference value

­ GL_INCR – Increment value, clamp to max
­ GL_INCR_WRAP – Increment value, wrap to zero

­ GL_DECR – Decrement value, clamp to zero
­ GL_DECR_WRAP – Decrement value, wrap to max

­ GL_INVERT – Bitwise inversion of value

⇨ Result is always masked with the stencil mask

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Operation

⇨ All three operations set using:
void glStencilOpSeparate(GLenum face,
 GLenum sfail, GLenum dpfail,
 GLenum dppass);

­ face specifies whether front, back, or both front and
back face state is set

­ sfail specifies the operation for fragments that fail
the stencil test

­ dpfail specifies the operation for fragments that fail
the depth test

­ dppass specifies the operation for fragments that
pass the stencil and depth tests

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Buffer

⇨ Clear the stencil buffer with the
GL_STENCIL_BUFFER_BIT to glClear:
glClear(GL_STENCIL_BUFFER_BIT);

­ If you're going to also clear the depth buffer, always
do it at the same time as the stencil buffer!

­ Hardware is optimized for clearing depth and stencil together
­ Clearing them separately is often much, much slower

⇨ Clear value is specified with glClearStencil

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Buffer

⇨ Writing to bits of the stencil buffer is controlled
by another write mask
void glStencilMask(GLuint mask);

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Buffer

glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT
 | GL_COLOR_BUFFER_BIT);
glEnable(GL_STENCIL_TEST);

/* Write 1 to stencil where polygon is drawn.
 */
glStencilFuncSeparate(GL_FRONT_AND_BACK,
 GL_ALWAYS, 1, ~0);
glStencilOpSeparate(GL_FRONT_AND_BACK,
 GL_KEEP, GL_KEEP, GL_REPLACE);
draw_some_polygon();

/* Draw scene only where stencil buffer is 1.
 */
glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
glStencilFuncSeparate(GL_FRONT_AND_BACK,
 GL_EQUAL, 1, ~0);
glStencilOpSeparate(GL_FRONT_AND_BACK,
 GL_KEEP, GL_KEEP, GL_KEEP);
draw_scene();

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Buffer

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Stencil Buffer

Image from Quake 3,  Copyright 1999 id Software, Inc.

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Typical fog... objects father away from the
camera are more fog colored

­ Eventually objects disappear into the fog
­ Objects closer than some minimum distance may

have no fog coloring applied

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Can be used for other, related effects:
­ In dark environments, distant objects are darker

­ Analogous to distance attenuation for lights

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Can be used for other, related effects:
­ Underwater objects fade to the water color

Image from http://www.richard-seaman.com/Underwater/Philippines/Highlights/index.html

http://www.richard-seaman.com/Underwater/Philippines/Highlights/index.html

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Simple fog usually works in one of three modes:
­ Linear fog:

f end−p

f end−f start

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Simple fog usually works in one of three modes:
­ Linear fog:

f end−p

f end−f start

Distance before
which there is no fog

Distance beyond
which there is only fog

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Simple fog usually works in one of three modes:
­ Linear fog:

­ Exponential fog:

f end−p

f end−f start

e−d×p

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Simple fog usually works in one of three modes:
­ Linear fog:

­ Exponential fog:

f end−p

f end−f start

e−d×p

Fog density

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Simple fog usually works in one of three modes:
­ Linear fog:

­ Exponential fog:

­ Exponential-squared fog:

f end−p

f end−f start

e−d×p

e−d×p2

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Once the fog factor is calculated, use it to
linearly blend between the fragment color and
the fog color

C=F⋅C fragment1−F ⋅C fog

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Where does p come from?

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Where does p come from?
­ Easy answer: eye-space Z

­ “Off center” points receive less
fog than they should

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Fog

⇨ Where does p come from?
­ Easy answer: eye-space Z

­ “Off center” points receive less
fog than they should

­ Better answer: use eye-space distance
­ More expensive to calculate
­ Still has artifacts when calculated per-vertex

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Height-based Fog

⇨ Fog factor given by:

Where:
 is the fog density function

A and B are points in space

­ This integral gives the “optical depth”
­ Simplifying assumption:  depends only on altitude

e
−∫A

B
t dt

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Height-based Fog

⇨ Two components to the optical distance between
the eye and the fogged point:

­ Change in altitude:
­ Distance in the plane:

⇨ Two important cases:

f={
d×py   y=0

1d
 y 

2

×∫ey

py

y dy  y≠0

d=px−ex 
2pz−ez

2

 y=py−ey

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Height-based Fog

⇨ Two components to the optical distance between
the eye and the fogged point:

­ Change in altitude:
­ Distance in the plane:

⇨ Two important cases:

f={
d×py   y=0

1d
 y 

2

×∫ey

py

y dy  y≠0

d=px−ex 
2pz−ez

2

 y=py−ey

This is the “standard”
fog case!

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Height-based Fog

⇨ At each index n of a look-up table, store the
value:

⇨ To calculate the integral over e
y
 to p

y
, simply

calculate table[p.y] – table[e.y]
­ This kind of table is called a summed-area table, and

they are incredibly useful!

∫−∞

n
 y dy

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

References

http://developer.nvidia.com/object/shadows_transparency_fog.html
­ Older, but has some useful information and image

http://mrl.nyu.edu/~perlin/experiments/ball/
http://mrl.nyu.edu/~perlin/experiments/gabor/

­ Very cool example of what can be done with explicitly calculated fog
coordinates. Second link has the theory behind the Java applet.

Legakis, J. Fast multi-layer fog. In ACM SIGGRAPH 98 Conference
Abstracts and Applications (Orlando, Florida, United States, July 19 -
24, 1998). SIGGRAPH '98. ACM, New York, NY.

Nuebel, M. "Introduction to Different Fog Effects," In ShaderX2:
Introductions and Tutorials with DirectX 9. Ed. Wolfgang Engel.
Wordware, pp. 151-179, 2003.
http://www.gamedev.net/reference/programming/features/shaderx2/Introductions_and_Tutorials_with_DirectX_9.pdf

http://developer.nvidia.com/object/shadows_transparency_fog.html
http://mrl.nyu.edu/~perlin/experiments/ball/
http://mrl.nyu.edu/~perlin/experiments/gabor/
http://www.gamedev.net/reference/programming/features/shaderx2/Introductions_and_Tutorials_with_DirectX_9.pdf

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Next week...

⇨ More anti-aliasing
­ AA during primitive rasterization
­ FSAA

­ Supersampling
­ Multisampling

­ Temporal AA

© Copyright Ian D. Romanick 2009, 2010

1-June-2010

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

